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Wc considcr a scqucnce : 1',,: or orthogonal polynomials defincd hv a three-term

rccurrencc rormula, Rcprcscntations and hounds arc dCrIvcd ror the cndpoint> or

thc smallcst intcrval containing the i real and distinct I rems or 1'" In terms or the

parameters in thc rceurrcncc relation. Thcse rcsults arc hrought to hghl hy vie\\ ing

( !)" 1'" as thc charaetcristic polynomial or a S1gn-,,,'ml11clric Irl-diagonal matns

or ordcr II. Our lindings arc suhscqucntly uscd 10 ()htain 11l;\\ pmors I'lli' ~l nUll1hn (II'

hounds on the cndpoints or thc truc and limit Intcrvals or on!wgonalitv ror thc

s~l\ LIenee : 1\: I 1qSi '\eadellll"'· Pr'.':--,,_ Ill....

I. 11\ mO))UCIIO'-

We arc concerned with the zeros of polynomials ()" satisfying a
recurrence relation with real coefficients

Q,JX)=(:X".\--/i")Q,, ,IX)-;"(),, ,1\). /I = 1.2..... I 1.1 I

where Q 1(\)=0. QoCx)==:XolO (:X o real) and :x" ,J'"",>O 1/1 I).

LettingP,,(,x)=(J'oJ'I"'x,,) I Q,Jxj,c"==J',, I/i" and <=(:x" ,:x,,) ';'".it
IS seen that

/I = I. 2. ( 1.21

where P IIX) = 0, Po(y) = I. So without loss of generality we can take the
simpler recurrence formula ( 1.2), where c" is real and i" I > 0 1/1> 0). as a
starting point for our analysis. Note that the value of i' l is irrelevant: it will
be convenient. however. to assume i I = I.

It is well known (see [3]) that P"I\) has /I reaL distinct leroS\"1
Y,,:, < ... <\"", Moreover. the zeros of P"IY) and P" I ,Ixi interlace. that IS.

i = I. 2.. '. II, (u)
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Hence the limits

255

~,= lim x"'
!/ .. j

and '1,= lim x,"', ,I I ( 1.4)

exist where we allow of - ~£ and +.JJ, respectively. The quantities (I and
'II are of particular interest, since they are the endpoints of the true inter/'al
0/ orthogonality for : P,,]: the smallest interval containing the support of a
mass distribution with respect to which the polynomials P" are orthogonal.

It is evident from (1.3) and (1.4) that

so that

(,:( (, t 1< 1],+ 1:( ']1' ( 1.5 )

a =lim C;, and T= lim I],
j--> f

( 1.6)

exist, agaIn allowing of ±£. The quantItIes a and T are also of interest.
SInce they are, if not a = T = ± x, the endpoints of the limit intcrral 0/
orthogona!itl' for : P,,:: the smallest interval containing the limit points of
the support of a mass distribution with respect to which the polynomials
P" are orthogonal. We will have use for other representations for a and T.

Namely, let (1/1 and 1]lk ! denote the endpoints of the true interval of
orthogonality for the polynomials P;,k I which are determined through the
recurrence formula ( 1.2) by the sequences : C;,k! = c" I /, ) ,: and
:;.;/k'=/'lI+kL: 2" Then [3~ Theorem ][1.4.2J

and [5J

k = O. l. .... ( 1.7)

lim (1/ I = a.
t:. + J

lim I] Ilk ! = T.
A ".I

(1.8 )

Our foremost aim is to obtain information on the interval [X"I' x"''], the
smallest interval containing the zeros of P", in terms of the parameters
defining P". That is, we will look for representations and bounds for x,,]
and x"" in terms of c, and J., (i = I, 2, ... , n). Actually, without loss of
generality we can confine attention to the point X"I' Namely, if x,,] <
x"c < ... < x"" are the zeros of P,,(x), then -x"" < -x"." ] < ... < -x,,]
are the zeros of P,,( - x). Furthermore, it is readily seen that the
polynomials ]5,,(x) = (-1 )" P,,( -x) satisfy a recurrence relation of the type
(1.2) with parameters c,= -c, and ):,=)". It follows that a lower (upper)
bound for x,,] yields an upper (lower) bound for x""' and vice versa, simply
by reversing the sign of the c,'s in the pertinent bound and the sign of the
bound itself.
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Once wc have representations and bounds for X"I at our disposal it is of
course easy to derive similar results for ~ 1 and (J (and, via the procedure
outlined above, for IJ 1 and T) by virtue of ( 1.4) and ( 1.8). The second objec­
tive of this paper is to show that many hounds for ~ 1 and (J that were
derived in the past by various techniques (sec [3, 5J and the references
mentioned there) can be obtained in this way.

Our approach to generate representations and hounds for X"I is hased
upon the observation in Section 2 that (-- I )" P,,(x) can be interpreted as
the characteristic polynomial of a sign-symmetric tri-diagonal matrix,
so that, actually, .\",,1 is the smallest eigenvalue of such a matrix. In
Sections 3 5 various ways to exploit this observation are elaborated.

2. ORTIIOGO"iAL POLYNOMIALS A',jD TRI-DIAGONAL MATRICES

Suppose we are given sequences of real numbers :a,:/ 2' (h;J/ 2 and
(c;J/ 1 with the property sign(a;l= sign(h,). With these numbers we form
the tri-diagonal matrices

o

II = I, 2, ... , (2.1 I

and we ask for the eigenvalues of I'll" If ll, = hi = 0 for some i:s.: n, then
determination of the eigenvalues of T" reduces to determination of the
eigenvalues of two sign-symmetric tri-diagonal matrices of lower order, so
there is no loss of generality in confining attention to the case a,h i > 0 for
all i. Now writing i.;=aih i and expanding det(T,,-xl,,) by its last row, it is
readily verified that

det( T" - .\1,,) = (-I )" P,,(x), n = 1,2, ....

where the P" are the polynomials of ( 1.2). Here I" denotes the n x n identity
matrix. (Incidentally, this is yet another way to prove that the eigenvalues
of a sign-symmetric tri-diagonal matrix are real and distinct; cf. [7J and
the Solution to Problem 80 4, SIAM Rev. 23 (1981), p. 112.) Thus our
original problem of finding representations and bounds for X"I' the
smallest zero of the polynomial P,,(x) defined by (1.2), can be phrased as
the problem of finding representations and bounds for the smallest eigen-
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value of the matrix Til of (2.1), where a, and h, are any real numbers such
that aihi=j.i>O (i=2, 3, ... ).

The connection between orthogonal polynomials and symmctric
tri-diagonal matrices is well known (sec, e.g., [II, Sects. 78]). It would
seem that our generalization to sign-symmetric tri-diagonal matrices is of
no consequence, since, in determining the eigenvalues of Til' one might as
well choose ai = hi = ±ii 2

, which makes Til symmetric. We shall see,
however, that certain bounds for the eigenvalues of Til do depend on the
particular values chosen for a, and hi' so that it is advantageous not to
specify these values for the present.

Three approaches to obtain information on the smallest eigenvalue XIII of
Til' and hence on the q uantities ~ I and (J, will be discussed in the following
three sections. Throughout 11 will be a fixed but otherwise arbitrary natural
number.

3. GERSCHGORI0i DISCS

We will assume that the numbers (/i and h, of (2.1) satisfy

i= 2.3 .... , 11. (3.1 )

where h, h, ... , XII are positive numbers. From Gerschgorin's Theorem [9,
Sect. 2.2.1] it then follows immediately that

XIII? min :i
1 I 1/

(3.2)

where XI =x, XII + I = O. Moreover. if we choose

(3.3 )

(i = 2, 3, ... , 11), which is positive by virtue of ( 1.2) and ( 1.3), then equality is
readily seen to prevail in (3.2). Summarizing, we can state the following
theorem, which was obtained independently by Gilewicz and Leopold [12 ]
(in terms of XlIII) using quite a different argument.

THEOREM I. With X. == {X 1,1.2' ... , XII t I} ranging liucr all sequcnccs such
that X t = C£, XII + I = 0 and Xi> 0 (I < i ~ n) onc has

xlIl=max( min :Ci-X, I),i-X'.I;:·
Xli 11

The next corollary of Theorem I is originally due to Leopold [8].

(3.4 )
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COROLLARY 1.1. For any real numher rjJ such that rjJ:S C I and rjJ < C,
(i = 2, 3, ... , n), one has

XIII? min {rjJ- (c,-rjJ) I),,}.
I i<;11

(3.5 )

Proof: Defining XI=CfJ, XIIII=O and X,=(c,-rjJ) Ii., (i=2,3, ... ,n),
we have

c, - X, I), - X, I I = rjJ-(C'1 I -Ip) i = 2, 3, "" n ~.

rjJ, l=n,

so that the result is implied by Theorem I. I

By choosing X, = )!2 (i = 2, 3, ... , n) we obtain a lower bound for XIII
which is well known [1]. (Here and elsewhere () 'I denotes Kronecker's
delta. )

COROLLARY 1.2. One has

XIII? min {c,-(I-()'I)i.i 2 -(I-()II,)i.!1IJ. (3.6)
I i~!I

As for ~ I and (J Theorem 1 leads to the following representation
theorems, which were obtained earlier in [5] by studying oscillatory
behaviour of solutions of certain second order linear difference equations.

THEOREM 2. With X == {X I' X2' ... } ranging over all infinite sequences
such that XI =X and X, > 0 (i> 1) one has

~I=max (inf lC,-X, li,,-X'+I}}'
Z i 1

Proof: From (1.4) and (3.4) it follows that for any sequence X

~I? inf {c,- X, li.,_ X, II}'
, I

(3.7)

(3.8)

If ~1 = -x we obviously have equality in (3.8). To show that equality may
be obtained if ~ I > - x one should take

(3.9)

(i = 2, 3, ... ), which is positive in view of ( 1.2) .(1.4), and use the recurrence
relation (1.2). I
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THEOREM 3. With X == {X I' X2' ... } ranging over all infinite sequences
such that XI = cJJ and X, > 0 (i> I) one has

(J = sup { lim inf {c;- X; 1;.;- 1.,+ I}}'
z /'-f

Proof: Suppose X is such that

(J< lim inf{c;-x,-IA;-xl+d.
/-.,. -y

Then, for k sufficiently large,

(3.10)

This, however, contradicts (3.7) interpreted for ~\k), since ~\kl ~ (J. Con­
sequently,

(3.11 )

If (J=-OO we clearly have equality in (3.11). If (J>-cJJ, and hence
~Itl > -CfJ (see (1.7) and [3, Theorem 11.4.6]), then the right-hand side of
(3.11) can be made arbitrarily close to (J. Namely, consider the sequences
i kl == {it l

, Xjk l, ... } (k = 1,2, ... ), where X\kl = CfJ,

(3.12)

for i> k + I and Xjk I is positive but otherwise arbitrary for 2 ~ i ~ k + I.
Substitution of X1kl in the right-hand side of (3.11) makes it equal to ~\k).

The statement follows since ~\kl i (J as k ---+ CfJ. I
We refer to [5] for a survey of lower bounds for ~ I and (J that have

appeared in the literature and may be conceived as corollaries to Theorems
2 and 3.

4. OVALS OF CASSIN!

A theorem of Brauer's [9, Sect. 2.4.2] states that for any n x n matrix
A == (alj) each eigenvalue lies in at least one of the n(n - I )/2 ovals ol
Cassini,

i, j= I, 2, ... , n; i=l-j, (4.1 )

where P; == L/#; la,J If A is a tri-diagonal matrix a stronger result is
available, however.· First note the following.
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THEOREM 4. Let A == (a,,) he an n x n tri-diagonal Inatrix. If

la"lla'II." 11>1',1"1 I.

then det(A ) ic O.

i = 1. 2..... n ~ I. (4.2 )

ProoF Suppose that det( A) = O. Then there IS a
(xj,xc .... ,xnlicO such that Ax=O. For convenIence
Xo = x" I I = O. Now let r be such that

Ix,l= max :1\,1).
lin

and let s E : r - I, r + I: be such that

Iv,l=max:lx,II.lx'IIIJ.

vector x ==
we define

Clearly, Ix,l > () since x ic O. Moreovcr. Iv,1 > () because the opposite
conclusion together with Ax = 0 would imply x, = O. We then have

lan·x,1 = i
I

la"x" = I

I anx,l :( IX,1 1',
IT/

I a'/"\,I· :( Iv,1 1'"
/f- .\

whence la"lla"I:(P,I',. Sincelr-.\I=I. it follows that 14.2) does not
hold. I

As a simple corollary we have the result that we were referring to.

COROLLARY 4.1. An eigenvalue of the n x II Iri-diagollalllll/lri.v A '= (a'il

!ies in at least one of the n - 1 ovals

1.::-a"II.::--a'II.,. II :(1',1',. I' i = 1. 2, ... , 1[- 1. (4.31

Back to our original context we let (I, and h, be as in (3.1) with X, being a
positive number. From Corollary 4.1 we then get after some algebra

X"I~ min ~:('I+(':+I_((("II_(',)c+4I,)12:, (4.4)
I i< n -

where

(4.5 )

and XI = XJ, X" 1 1 = O. Moreover, substitution of (3.9) in (4.5) is readily
seen to yield eq uality in (4.4), so that we have a new representation
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theorem for X"I' It will be convenient to reformulate this result. Namely.
we observe that

so that II is dependent only on the products X,X't I and XI t IX, t 2' Now
defining

it follows that

i = l. 2, .... II. (4.6)

1,=).,+ 1((I--hl)h'~I) I. (4.7)

where hi =0. h,,= I and O<h,< 1 (1 <i<II). On the other hand. any such
sequence {hi. h2 • ... , hn ) uniquely determines the products X'/.I+ I (1 ~ i ~ n)

via (4.6), so our representation theorem may be stated as follows.

THEOREM 5. Wilh h == [h I. h2' .... hn ] ranxinX or('/" all sequenCi'S such
Ihal hi =0. h,,= I andO<h,< 1 (1 <i<n). one has/c)r n> 1

x"l=max{ min ~{CI+Clfl-((C'+I-CY+ 4),_; Y
2
H. (4.X)

hi,., ,,2 (I-h,) l,t 1/ Sf

If n = 2 we can write down the exact value of X"I = X21 directly from
Theorem 5. If n > 2 a simple lower bound for Xnl is obtained by taking
h, = ~ (I < i < n ).

COROLLARY 5.1. For n> 2 one has

X"I ~ min ~ {c,+C;t I-((C'f l-cY+e)it 1)12}. (4.9)
1 l<fI

where el=X ij"i= I. n-1 and e,= 16 olherwise.

The representation (4.8) (as compared with (4.4)) shows to full advan­
tage when we use the result to obtain representations and bounds for SI
and (7. Before doing so we must introduce the following concept. An infinite
sequence ~== {{31.{32 .... ] is called a chain sequence if each Ii, admits a
representation of the form

(4.10)

where 0 ~gl < I and 0 < XI < I (i> I). The sequence g == {XI. g2 • ... ] is then
called a parameter sequence for ~. Of interest to us is the fact that if ~ is a
chain sequence. then there exists a parameter sequence h == [h I. h2 • ... } for ~
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(the minimal parameter sequence) with the property hi = 0 (see [3,
Sect. IlLS] for a proof and other useful properties of chain sequences).

We are now ready to state the representation theorems for ~ I and (J that
are implied by Theorem 5. These results are largely due to Chihara [3].

THEOREM 6. With p== {{J I' {3 2 , ... : ranging over all chain sequence.I, one
has

Proof The inequality that is implied by (4.11 ) for any fixed p follows
directly from Theorem 5. If ~ I >·-x one should choose

(4.12)

which yields a chain sequence by [3, Theorem IV.2.1], to obtain
equality. I

A simple corollary to Theorem 6 is the analogue to Corollary 5.1,
obtained by letting j) I = 4, {J 1= 1(i> I ).

COROLLARY 6.1. One has

~ I ~ inf 4{c i + c1 I I - (( c, + I -. CY + e,i., . I ) I 2 : '
, I

where 1', = 8 if i = 1 and 1', = 16 otherwise.

(4.13 )

THEOREM 7. With p== [{3 I' {J 2' ... : ranging orer all chain sequences, one
has

(J=sup: lim inq[c,+c'f I ((Cit 1-c,)'+4;'11 1/{J,)12::.
Jl 1-4 f

(4.14)

Proof Considering that (j3k+'],' 1 is a chain sequence if :/J,:,' I is a
chain sequence, it follows readily from (1.7), (1.8) and (4.11) that for any
chain sequence P

(J~ lim inf4{c1+c1tl ((C I11 -C,)2+4),111/{),)12:
i -+ f

(4.15)

(cf. the proof of Theorem 3). If (J = -x we obviously have equality in
(4.15), so let us assume (J> -~. Now consider a sequence of points ylk I,

k = 1,2, ... , such that y1k) i (J as k --+ x and y1kl < (J for all k (if ~I/I < (J for
all k, then these numbers will do). Subsequently, consider a sequence of
chain sequences plk!, k = 1,2, ... , which are such that
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for i sufficiently large. Using [3, Theorem IV.3.2 and the Corollary to
Theorem 111.5.5] it is not difficult to show that such chain sequences exist.
Substitution of pi' I in the right-hand side of (4.15) makes it equal to yl' I. It
follows that the right-hand side of (4.15) can be made arbitrarily close to (J

by choosing p= pi' 1 with k sufficiently large. I
We refer to [3,4] for bounds on (J that can be obtained from

Theorem 7.

5. THE FIELD OF VALUES

In this final section we shall assume

i = 2,3, ... , (5.1 )

which renders the matrix T" of (2.1) symmetric. It then follows from [9,
Sects. 5.2.2 and 5.2.6] (see also [2, Theorem 7.2]) that the interval
[x" 1.Y",,] is precisely the field 0/ mlues of T", i.e., the set of numbers of the
form yT"y', where y == (l'I' .1':" ... , .1',,) and yy' = L y~ = I. We note that

yT"y'= L (1'~cl-2rl 1.1')::'),
i I

(5.2)

where l'o = O. Moreover, in determining the minimum of (5.2) over all
n-dimensional unit vectors y, we can evidently restrict ourselves to y in the
non-negative orthant. So, generalizing a result of Freud's [13] (who
phrased it in terms of x",,), we can conclude the following.

THEOREM 8. With 0 == [°0 , °I' ... , O,,} ranging over all sequences o/non­
ncgatil'c realnumhcrs such that 00 = 0 and L (Ji = I, one has

(5.3 )

It is known (see, e.g., [10]), but also easy to observe from (5.2), that the
unit eigenvectors of T" yield the stationary points of yTIly'. Now if Y is a
unit eigenvector, then yT"y' equals the corresponding eigenvalue, so the
eigenvalues of Til are precisely the (local) extrema of yTlly', while the
global minimum XIII of yTllyl is attained by the unit eigenvectors
corresponding to the smallest eigenvalue XIII' In fact, since the eigenvalues
of T" are simple, the space of eigenvectors corresponding to a particular
eigenvalue is one dimensional. Hence, having observed already that the
minimum over all unit vectors of yTlly' is attained by some vector in the
non-negative orthant, we can conclude that for any sequence

640/51/3-6
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{} == {80 , 8 1, ... , 11,,] of non-negative numbers such that 00 = 0 and L 0, = L
one has

"
X"I'S L (Oi("~ 2(0, IO),llcl

, I

(5.4 )

with equality prevailing for precisely one sequence (l = {j == : (Jlh (J I ..• (i" :.
It is not difficult to show that, actually.

(1 'S i'S n), where

/ II 1 '. 1

IJ, = P7 1('\"1) ( L P7(\,,1 l)
\; 1\

(5.5 )

i=O. L. ( 5.1) )

By virtue of (1.3), Ii; is positive for i = L 2.... ,11. It follows in particular that
the inequality in (5.4) is strict if some of the 0, (i> 0) are zero. Below we
give two corollaries to Theorem 8. of which the first one is known (see. e.g..
[6] ).

COROllAR Y 8.1. For II? 1 (Jill' has

\"I'S min : (',:
[ [ 1/

(5.7 )

and the inequality is strict if alld ollh if 11 > I.

Proof: Letting (), = ()u' j = 0, I..... 11. we obtain from (5.4) that X"I 'S (',
for all i = L 2.... , n. Clearly. x 1.1 = (' I. so the last assertion follows from the
assertion below (5.6) and the fact that OJ = 0 for some i> 0 if 11 > 1. I

COROllAR Y 8.2. For 11 ? 2 onc has

X"I'S min ~lC'+("'I--((("'I-(',)c+4i'+I)I~:, (5.8)
I ~ i< 1l

and the inequality is strict if and only if 11 > 2.

Proof: Choosing 9 in (5.4) such that

and Gj=O for j#-i, i+ I (i= 1.2.... ,11-1) leads readily to (5.8). Since
X2.1=~(Cl+('2-((C2-CI)2+4}2)li2) and 0,=0 for some j>O if n>2.
equality previals if and only if n = 2. I

We note that the particular choice for 0 in (5.9) results from minimizing
the right-hand side of (5.4) on the condition that 0, = 0 for j #- i. i + I.
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From (1.4) we have Xfli -> ~ I (n ->X)), so Theorem 8 immediately leads
to a representation formula for ~ I' As before we will reformulate the result
in such a way that bounds for ~ I can be easily obtained from it.

THEOREM 9. With 0:= {H(b HI' ... } ranging over all infinite sequences oj
non-negative numhers such that 00 = 0 and L 0, = I, one has

~ 1 = inf { lim inf{f ((I,c, - 2(0, IOJYC)II
o 1/ -,. f i 1 rS

Proo{ Let 0 be a fixed but otherwise arbitrary sequence. We let

fI

Sfl(O) = 2..: 0,
, 1

(5.10)

and we denote bYf,(O) the expression between the inmost braces in (5.10).

Finally,/(O)=lim inffl~c /;,(0). We shall prove that ~I :(f(O). If ~I = -X),

then the statement trivially holds, so let us assume ~ 1 > ~ X).. Now suppose
~,-f(0»2[;>O. Then there exists an integer N:=N(I:) such that both
~ 1- /v(O) > [; and s,,(O) ~ I > ~ I - I: (the lattcr condition being relevant only
if ~I>O.) Also, let O*:=:O(f,O~, ... } be such that O,*=.lyl(O)O, for
i = 0, I, ..., Nand (1,* = 0 otherwisc. We then havc, by (5.4), (1.3) and (1.4),

~ 1 -I: >/v(O) = .lv(O) /v(O*)? sv(O) XVI> .ld O) ~ I > ~ I -I:,

which is a contradiction. Consequently, ~ 1 :( f(O).
A proof for the fact that, actually, ~ 1 = info f(O) is established by

considering the sequences O(fll:=(O!:,I,O\"I, ... j, where O~fli equals the right­
hand side of (5.5) if 1:( i:( nand 0;") = 0 otherwise. One then has
~I :(f(O(fll)=xfll , while xfI,l~, as n->x. I

It is easily seen that Theorem 9 implies [5, Theorem 4]. We refer to [5J
for a survey of known upper bounds for ~ 1 that are corollaries to
Theorem 9.

Regarding (J we have the following result.

THEOREM 10. For any sequence 0:= {Oo, 0 1 , ... : such that 00 = 0 and
L (I, = I, one has

(J:( }i~x inf Ll~mc inf ttl (O,c u , - 2(0, 1OJ, ~ ,) 12)n· (5.11 )

Proof Suppose the opposite of (5.11) holds true. Then, for I: > 0
sufficiently small, there are infinitely many numbers k such that

(5.12)



266 ERIK A. VAN DOORN

However, by Theorem 9, the right-hand side of (5.12) IS not less than
I: + ~ \' I, which contradicts (1.8). I

Theorem 10 is very similar, but not quite identical to [5, Theorem 5].
However, the latter theorem and all other upper bounds for (J that were
derived in [5J may be obtained from Theorem 8. Since we can add nothing
new to these results, we shall not pursue a detailed derivation.
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