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We consider a sequence (P, 1 of orthogonal polynomials defined by o three-term
recurrence formula. Representations and bounds are derived for the endpoints of
the smallest interval containing the (real and distinety zeros of P, in terms of the
parameters in the recurrence relation. These results are brought to light by viewing
(- 1) P, as the charactenstic polynomial of a sign-symmetric tri-diagonal matrix
of order #. Our findings are subsequently used 1o obtain new proofs for a number of
bounds on the endpoints of the true and limit intervals of orthogonality for the

sequence P, . 0 1987 Academic Press. ng

o

. INTRODUCTION

We are concerned with the zeros of polynomials (), sutisfying a
recurrence relation with real cocfficients

Qn(}‘A):(xu’\A\’ /iu‘Qu i('\‘)”7 ;‘HQ’J "~\.)~ == l 2 ']1 )

where O ((v)=0. Oyx)=2,#0 (%, real) and =, ,2,.,>0 (n>1)
LC[llng Pu('\‘) = (1(111 o 171) ] Q}I(’\- )* (VN = 1/1 l/f” Llnd )'/I = (7” I Xu) ! TH‘ 1‘

1s seen that
Pix)=(x—c,) P, (x} 2,P, -ty n=1.2. .. (1.2)

where P (x)=0. P,(x)= 1. So without loss of gencrality w¢ can take the
simpler recurrence formula (1.2), where ¢, is real and 2, | >0 (n>0), as a
starting point for our analysis. Note that the value of /4, 1s irrelevant; it will
be convenient, however, to assume 7, = 1.

It is well known (see [3]) that P, (x) has » real, distinct zeros v, <
N, < - < v, o Morcover, the zeros of P (v)and P, , (x)interlace, that is,

" PO

DT S T (1.3)
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Hence the limits

¢, = lim x,, and n,= lim x (1.4)

o - s

nao j4d

exist, where we allow of — = and + o, respectively. The quantities &, and
n, are of particular interest, since they are the endpoints of the true interval
of orthogonality for { P} the smallest interval containing the support of a

mass distribution with respect to which the polynomials P, are orthogonal.
It is evident from (1.3} and (1.4) that

< <, <0, (1.5)
so that

o= lim ¢, and = lim g, {(1.6)

i i

exist, again allowing of + . The quantities ¢ and t arc also of interest.
since they are, if not ¢ =1t= +. the endpoints of the /limit interval of
orthogonality for { P, |: the smallest interval containing the limit points of
the support of a mass distribution with respect to which the polynomials
P, are orthogonal. We will have usc for other representations for ¢ and .

Namely, let &¢*' and »'*’ denote the endpoints of the true interval of

orthogonality for the polynomials P'** which are determined through the
recurrence formula (1.2) by the sequences {cf'=¢, ]/ , and

Lk =2, 7.5 Then [3. Theorem 111.4.2]
SR ER T Iyttt A=0.1. ... (1.7)

and [5]

lim &f' =0, lim 7t =1 (1.8)
ko s Ak sy

Our foremost aim is to obtain information on the interval [ v,, x,, ], the
smallest interval containing the zeros of P,, in terms of the parameters
defining P,. That is, we will look for representations and bounds for x,,
and x,, in terms of ¢, and 72, (i=1, 2, .., n). Actually, without loss of
generality we can confine attention to the point x,,. Namely. if x,, <
X< oo <x,. are the zeros of P, (x), then —x,, < —x,, < - < —x,
arc the zeros of P,(—x). Furthermore, it is readily seen that the
polynomials P (x)=(~1)" P,(—x) satisfy a recurrence relation of the type
(1.2) with parameters ¢,= —c¢, and 4,= 4,. It follows that a lower (upper)
bound for x,; yields an upper (lower) bound for x,,, and vice versa, simply
by reversing the sign of the ¢;s in the pertinent bound and the sign of the
bound itself.
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Once we have representations and bounds for x,,, at our disposal it i1s of
coursc casy to derive similar results for ¢, and ¢ (and, via the procedure
outlined above, for n, and 1) by virtue of (1.4) and (1.8). The second objec-
tive of this paper is to show that many bounds for ¢, and ¢ that were
derived in the past by various techniques (see [3,5] and the references
mentioned there) can be obtained in this way.

Our approach to gencrate representations and bounds for x,, i1s based
upon the observation in Section 2 that (—1)* P, (x) can be interpreted as
the characteristic polynomial of a sign-symmctric tri-diagonal matrix,
so that, actually, v, is the smallest cigenvalue of such a matrix. In
Sections 3 5 various ways to exploit this observation arc claborated.

2. ORTHOGONAL POLYNOMIALS AND TRI-DIAGONAL MATRICES

Suppose we are given sequences of real numbers [«,j,; .. b} - and

e}/ with the property sign(«;) =sign(h,). With these numbers we form
the tri-diagonal matrices

( ¢ by h
d+ ¢ by 0
a4y
I, = n=1.2.. (2.1)
0 - - h,
(1” (.”
N /

and we ask for the cigenvalues of 7. If a,=h,=0 for some i<#n, then
determination of the eigenvalues of T, reduces to determination of the
eigenvalues of two sign-symmetric tri-diagonal matrices of lower order, so
there is no loss of generality in confining attention to the case a,;h;> 0 for
all .. Now writing /2, = u;b, and expanding det( 7T, — x/,) by its last row, 1t is
readily verified that

det(T,—x1,)=(—1)" P, (x) n=1.2, ..

where the P, are the polynomials of (1.2). Here /, denotes the # x n identity
matrix. (Incidentally, this is yet another way to prove that the eigenvalues
of a sign-symmetric tri-diagonal matrix are real and distinct; ¢f. [7] and
the Solution to Problem 80 4, SIAM Rer. 23 (1981), p. 112.) Thus our
original problem of finding representations and bounds for x,,, the
smallest zero of the polynomial P, (x) defined by (1.2), can be phrased as
the problem of finding representations and bounds for the smallest eigen-
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value of the matrix T, of (2.1), where ¢; and A, are any real numbers such
that a,b,=4,>0 (i=2,3, ...).

The connection between orthogonal polynomials and symmerric
tri-diagonal matrices is well known (sece, e.g., [ 11, Sects. 7-87). It would
seem that our generalization to sign-symmetric tri-diagonal matrices is of
no consequence, since, in determining the eigenvalues of 7, one might as
well choose a;=h,= +i"? which makes T, symmetric. We shall see.
however, that certain bounds for the eigenvalues of 7, do depend on the
particular values chosen for «, and h,. so that it is advantageous not to
specify these values for the present.

Three approaches to obtain information on the smallest eigenvalue x,,, of
T,. and hence on the quantities ¢, and o, will be discussed in the following
three sections. Throughout # will be a fixed but otherwise arbitrary natural
number.

3. GERSCHGORIN Discs

We will assume that the numbers «, and b, of {2.1) satisfy

aj=—y, "4 b=y, i=2.30..m (3.1
where y-, ¥4, ..., y,, are positive numbers. From Gerschgorin's Theorem [ 9,
Sect. 2.2.17] it then follows immediately that
'YHI> min {(Il £ I}‘Iilrﬁ I:‘ (32)
1

b H
where y, =oc, z,,, =0. Moreover. if we choose

=P, (x,))/P oy, (3.3)

(i=2, 3, .., 1), which is positive by virtue of (1.2) and (1.3), then equality is
readily seen to prevail in (3.2). Summarizing, we can state the following
theorem, which was obtained independently by Gilewicz and Leopold [12]
(in terms of x,,) using quite a different argument.

THEOREM L. With 3= {y,, fo» s ¥n .} Franging over all sequences such
that x, =, ¥, =0 and y;,>0 (1 <i<n) one has

X, =max { min

be L =isin

RO e TR AT (3.4)

The next corollary of Theorem 1 is originally due to Leopold [87].



258 ERIK A. VAN DOORN

COROLLARY L1.  For any real number ¢ such that ¢ <c¢, and ¢ <,
(i=2.3...,n), one has

i min G- (ed) AL (35)
Proof. Defining y, =0, y,, ;=0 and y,=(¢,—¢) "4, (i=2,3, .. n)
we have
oy —(ea—@)y "4, i=1
=0 Ao =ld—(c.,  —d) ! Aiyts i=2,3 ..n—1
o, i=n,

so that the result is implied by Theorem 1. |

By choosing 7,=4!7 (i=2,3,...n) we obtain a lower bound for x

ni
which is well known [1]. (Here and elsewhere ¢, denotes Kronecker's
delta.)

COROLLARY 1.2. One has

R ]min o= (L=, 21— (1—=0,) A2 1. {3.6)
sisn

As for ¢, and ¢ Theorem 1 leads to the following representation
theorems, which were obtained ecarlier in [5] by studying oscillatory
behaviour of solutions of certain second order linear difference equations.

THEOREM 2. With y =1y, 12, ..} ranging over all infinite sequences
such that y, = o and y,;>0 (i> 1) one has

T L I 1
’51‘mdxlm€ VG X AT iy g (3.7)
x Iz

Proof. From (1.4) and (3.4) it follows that for any sequence g
Sizianf fe,—g, g (3.8)
izl
If £, = —oc we obviously have equality in (3.8). To show that equality may
be obtained if {, > —2¢ one should take
= —P (&P (<)) (3.9

(i=2,3,..), which is positive in view of (1.2)-(1.4), and use the recurrence
relation (1.2). |
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THEOREM 3. With ¥ ={y. %2, ..} ranging over all infinite sequences
such that y, = oo and y,>0 (i> 1) one has

c=sup {lim inf {¢;,— %, "A,— 2,1} }- (3.10)

iorx
x

Proof. Suppose y is such that

o< lim inf{c,— 3 A — s b

Then, for k sufficiently large,

N sk .

6<ln£'{( /(1 /1+1f—1nf1c *Xkll"“:’)-/fke—wrl}'
1=K !

This, however, contradicts (3.7) interpreted for (), since ¢{¥'<g. Con-

sequently,

oz lim inf{c, -y, "Ai—tivi ) (3.11)

1=

If 6= —oc we cledrly have equality in (3.11). If ¢> —oc, and hence

¥ > —oo (see (1.7) and [3, Theorem 11.4.6]), then the right-hand side of

(3.11) can be mdde arbltrarlly close to 0. Namely, consider the sequences
(/\)7 f k)

1 L gL (k=1 2, ., where y{* = oo,
/:A)_ Pfk)k 1(:‘1k))//Pf‘k)k 2(5111\')) (312)

for i>k+1 and y'* is positive but otherwise arbitrary for 2<i<k + 1.
Substitution of x‘“ in the right-hand side of (3.11) makes it equal to &',
The statement follows since £ 16 as k —» 0. ||

We refer to [5] for a survey of lower bounds for &, and ¢ that have
appeared in the literature and may be conceived as corollaries to Theorems
2 and 3.

4. OvALS OF CASSINI

A theorem of Brauer’s [9, Sect. 2.4.27 states that for any n xn matrix
A= (a;) each eigenvalue lies in at least one of the n(n—1)/2 ovals of
Cassini,

|z—a;l |z—ayl <P, P, Lj=1,2, ., ni#], (4.1)

where P,=3 ,la . If 4 is a tri-diagonal matrix a stronger result is
available, however. First note the following.
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THEOREM 4. Let A=(a,) be an nxn tri-diagonal matrix. If
lail {d; vl > PP i=1.2, ..n—1, (4.2}

then det(A) #£0.

Proof. Suppose that det(4)=0. Then there 15 a vector x=
(xy. X5, X, )#0 such that Ax=0. For convenience we define
Xo=2xX,,,=0. Now let r be such that

= max .

Hn
and let se {r— 1. r+ 1} be such that
- = . [ . !
v =maxily, iy, ol

Clearly, |x,|>0 since x#0. Moreover, jv,|>0 because the opposite
conclusion together with Ax =0 would imply ¢, =0. We then have

|u/‘/“\.ri i Z CPAY < "\‘\'\ P;
Ly

v, :i S ay| <l P
(R

whence |a,,| ja. | < P, P, Since jr—s| =1, it follows that (4.2) does not
hold. |

As a simple corollary we have the result that we were referring to.
COROLLARY 4.}, An eigenvalue of the nxn tri-diagonal matrix A= (a;)
lies in at least one of the n— 1 ovals
lc—ayljz—a,,,;, J<PP, . |. =12 ..n—1 (4.3)

Back to our original context wc let ¢, and A, be as in (3.1) with y, being a
positive number. From Corollary 4.1 we then get after some algebra

X

> min L4, (e — o)) . (4.4)

V<i<n
where
11:(1191+X1 ])~l)(xlﬁl+Z1QIl)“l#1)~ (45)

and y, =2, y,.,=0. Moreover, substitution of (3.9) in (4.5) is readily
seen to yield equality in (4.4), so that we have a new representation
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theorem for x,,. It will be convenient to reformulate this result. Namcly,
we observe that

O (R —
e )VI-FZ,Z,;] ;'1+I+X[QIZI"2/ )

so that 7, is dependent only on the products y;x,,, and z,, ,7,,.. Now
defining

1
=

ho=2+ 0 .00) (=1, (4.6)

~

it follows that
ti=4 o ((L—h)h ). (4.7)

where 7, =0, h,=1and O< ;<1 (1 <i<n). On the other hand, any such
sequence {#,, i15, .., i, } uniquely determines the products y,y,,, (1 <i<n)
via (4.6), so our representation thcorem may be stated as follows.

THEOREM 5. With h={h,, h,, ... h,} ranging over all sequences such

nj

that hy =0, h, =1 and O < h, <1 (1 <i<n), one has for n> 1

= M n e e : SIS I (4.8)
-\”l‘m;ix ]l:?llflni “ (1+Ik ((I*Ii(, (lflll)h,*[/) } '

If =2 we can write down the exact value of x,, = x,, directly from
Theorem 5. If n>2 a simple lower bound for x,, is obtained by taking
hi=34(1<i<n).

COROLLARY S5.1. For n>2 one has

X,; = min

l<i<n

13—

{(’1+(‘:+ 1 —(((.i¢ 1 4(.1)1_|_(,’/:,‘+ [)] 3:* (49)

where ¢,=8 if i=1, n—1 and ¢,= 16 otherwise.

The representation (4.8) (as compared with (4.4)) shows to full advan-
tage when we use the result to obtain representations and bounds for &,
and ¢. Before doing so we must introduce the following concept. An infinite
sequence B={f,, B,, ..} is called a chain sequence if each f§, admits a
representation of the form

/))zz(l_gl)g1+l9 (4.10)

where 0<g, <land O<g,<1 (i>1). The sequence g={g,, g, ..} is then
called a parameter sequence for B. Of interest to us is the fact that if fis a
chain sequence, then there exists a parameter sequence h= {4,, 4., ...} for B
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(the minimal parameter sequence) with the property h,=0 (see [3.

Sect. IT1.57] for a proof and other useful properties of chain sequences).
We are now ready to state the representation theorems for &, and ¢ that

are implied by Theorem 5. These resuits are largely due to Chihara [3].

THEOREM 6. With 8= {f,. B,. ..} ranging over all chain sequences. one
has
:I :ml;dx { lnfl‘ 5 {(.I+ Civy ™ (((.lv [ ('I)l +4)“I+ I"’/;I)] 3; : (41 I )
s

Proof. The inequality that is implied by (4.11) for any fixed B follows
directly from Theorem 5. If &, > — one should choose

Bi=ile,, 1 =3 ‘(“1*51) L (4.12)

which vyiclds a chain sequence by [3, Theorem IV.2.1], to obtain
equality. |

A simple corollary to Theorem 6 is the analogue to Corollary 5.1,
obtained by letting ff, =1, g, =% (i>1).

COROLLARY 6.1. One has

.

Ezinf e+ —Ue, =) +e s ) (4.13)
iy

i
where e,=8 if i=1 and ¢, = 16 otherwisc.

THEOREM 7. With B=1f,. B>, ..} ranging over all chain sequences, one
has

c=sup | lim infd {c,+c.,, (e, —c)V +44,, /) 1L (4.14)
l} =
Proof.  Considering that {f,,,}/ , 1s a chain sequence if {f,]/ , is a

chain sequence, it follows readily from (1.7), (1.8) and (4.11) that for any
chain sequence B

o> lim inf 5 {c,+¢; 1 ((en —e V44 B (4.15)
(cf. the proof of Theorem 3). If 6 = —=~ we obviously have equality in
(4.15), so let us assume o> —3. Now consider a sequence of points %',
k=1,2, .., such that y*7g as k - =« and v**' < for all k (if ¥ < ¢ for

all k, then these numbers will do). Subsequently, consider a4 sequence of
chain sequences ', k =1, 2, .., which are such that

3 . 4 . K 1
/}:’A}:/"l‘ol((‘lql‘."‘l ]) ‘((I\.\( J)
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for ¢ sufficiently large. Using [3, Theorem [V.3.2 and the Corollary to
Theorem I11.5.57 it is not difficult to show that such chain sequences exist.
Substitution of B’ in the right-hand side of (4.15) makes it equal to y*’. It
follows that the right-hand side of (4.15) can be made arbitrarily close to o
by choosing B =B*’ with k sufficiently large. ||

We refer to [3,4] for bounds on o that can be obtained from
Theorem 7.

5. THE FIELD OF VALUES

In this final section we shall assume
a,=h,= —i1°, i=23 .., (5.1)

which renders the matrix 7', of (2.1) symmetric. It then follows from [9,
Sects. 5.2.2 and 5.2.6] (see also [2, Theorem 7.27) that the interval
[x,0. X, 1 is precisely the field of values of T, i.e., the set of numbers of the

form y7T,y", where y=(1,.v-.... v,,) and yy' =% 1>=1. We note that

YT,y =3 (yie, =2y, | yAl7), (5.2)
/ 1

i

where y,=0. Moreover, in determining the minimum of (5.2) over all
n-dimensional unit vectors y, we can cvidently restrict ourselves to y in the
non-negative orthant. So, generalizing a result of Freuds [13] (who
phrased it in terms of x,,), we can conclude the following.

THEOREM 8. With 8= 1{6,.0,,..,0,} ranging over ail sequences of non-
negative real numbers such that 0,=0 and Y. 0,=1, one has

XM:mm{V(QqAM&,QLVﬂ} (5.3)

[t} 14:‘I

It is known (sce, e.g., [10]), but also easy to observe from (5.2), that the
unit eigenvectors of T, yield the stationary points of yT,y". Now if y is a
unit eigenvector, then y7,y’ equals the corresponding ecigenvalue, so the
eigenvalues of 7, are preciscly the (local) extrema of y7,y’, while the
global minimum x, of y7T,y is attained by the unit eigenvectors
corresponding to the smallest eigenvalue x,,. In fact, since the eigenvalues
of T, are simple, the space of eigenvectors corresponding to a particular
cigenvalue i1s one dimensional. Hence, having observed already that the
minimum over all unit vectors of y7,y’ is attained by some vector in the
non-ncgative orthant, we can conclude that for any sequence

640:513-6
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0=1{6,,0,,..0,} of non-negative numbers such that 6,=0 and 3 0,= 1.
one has

xul g Z (()[(IIN 2(()1 I()/)~,)l 2) (54]

=N

1
RN

with equality prevailing for precisely one sequence 0=0= {d,.0,. ... 0
It 1s not difficult to show that, actually.

N T ™ i

()I:/)I: l(~\.nl)( Z I)/z('vnl)) (55)

joe

(1 <i<n), where
PAX = (A Ay A ) T PAY), i=0.1. .. (5.6)

By virtue of (1.3), 0, is positive for i= 1, 2, .., a. It follows in particular that
the inequality in (5.4) is strict if some of the 0, (i > 0) are zero. Below we
give two corollaries to Theorem &, of which the first one is known (see. ¢.g.

[6]).

COROLLARY 8.1. For n>=1 one has

’\‘ulg min :(‘r: (57)
R A
and the inequality is strict if and only if n> 1.
Proof. Letting 0,=¢6,, j=0,1, ... n wc obtain from (5.4) that v, <,

for all i=1, 2, .., n. Clearly, x, , = ¢,. so the last assertion follows from the
assertion below (5.6) and the fact that ;=0 for some j>0 ifn>1. |

COROLLARY 8.2. For n=2 one hus

< min

l=si<n

A

.nl

e e e =)y 44,0 (5.8)

1a]—

and the inequality is strict if and only if n> 2.
Proof. Choosing 6 in (5.4) such that

0:%A'%(()r~('z+l)(((‘uli(li)2+4}vy+l) 11~ (),4;]:1*()/ (59)

and 0,=0 for j#i i+1 (i=1,2,..,n—1) lcads readily to (5.8). Since
Xag=3ey = ((ca—¢,) +425)"7) and 0,=0 for some j>0 if n>2,
equality previals if and only if n=2. |

We note that the particular choice for 8 in (5.9) results from minimizing
the right-hand side of (5.4) on the condition that (,=0 for j# 4 i+ L
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From (1.4) we have x,, = ¢, (n — =), so Theorem 8 immediately leads
to a representation formula for &,. As before we will reformulate the result
in such a way that bounds for &, can be easily obtained from it.

THEOREM 9. With 0= {0,.0,. ..} ranging over all infinite sequences of
non-negative numbers such that 0,=0 and > 0,=1, one has

glzinf{ lim inf{z (0.¢,— 200, lo,z,)”)}}. (5.10)
0 " ox

Pl

Proof. Let 0 be a fixed but otherwise arbitrary sequence. We let

5,(0)=> 0,

P

and we denote by f,(0) the expression between the inmost braces in (5.10).
Finally, f{(8)=lim inf,_, , /,(0). We shall prove that &, < f(8). If {, = —ac,
then the statement trivially holds, so let us assume &, > —2c. Now suppose
& — f(8)>2¢>0. Then there exists an integer N= N(¢) such that both
& —fv0)>cand s,(0) &, > ¢, —¢ (the latter condition being relevant only
if &;>0.) Also, let 0*= 0% 0F. ..} be such that 0*=5,"(8)0, for
i=0,1,..,Nand 0* =0 otherwisc. We then have, by (5.4), (1.3) and (1.4).

Ei—e> (@) =5u(0) [ (0%) = 5,(8) xy, > 5 (0) & > & —,

which is a contradiction. Consequently, &, < f(0).

A proof for the fact that, actually, &, =infy /(0) is established by
considering the sequences 8" = {0{". 0\, ..}, where 0! equals the right-
hand side of (5.5) if I <i<n and 0"”=0 otherwise. One then has
S <0y =, while x,, [ & asn—> oo

It is easily seen that Theorem 9 implies [ 5, Theorem 4]. We refer to [5]
for a survey of known upper bounds for ¢, that are corollaries to
Theorem 9.

Regarding o we have the following result.

THEOREM 10.  For any sequence 0= {0,,0,, ..} such that #,=0 and
> 8,=1, one has

6 < lim inf{ lim inf{z (O o, —200, ,0,4,,)) 2)}}. (5.11)
k- o

n - f .
i=1

Proof. Suppose the opposite of (5.11) holds true. Then, for ¢>0
sufficiently small, there are infinitely many numbers & such that

og>¢e+ lim inf{z (0,¢p ., — 200, 1(),/"%“)1,2)}' (5.12)
n— -z i=1
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H

owever, by Theorem 9, the right-hand side of (5.12) is not less than

¢+ &), which contradicts (1.8). |

H

Theorem 10 is very similar, but not quite identical to [5, Theorem 5].
owever, the latter theorem and all other upper bounds for ¢ that were

derived in [ 5] may be obtained from Theorem 8. Since we can add nothing
new Lo these results, we shall not pursue a detailed derivation.

[5]
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